

IASelect

Finding Best-fit Agent Practices in Industrial CPS Using Graph Databases

CHANDAN SHARMA ROOPAK SINHA PAULO LEITÃO

OVERVIEW

- Problem: rank and select best-fit Industrial Agent (IA) practices¹.
- Approach:
 - Construct a *graph database* for storing practices.
 - Identify template query patterns for ranking, data extraction and selection.
 - Use <u>MVC</u> to construct a front-end for users.

• Contribution:

• IASelect, a tool for selecting best-fit Industrial Agent (IA) practices in P2660.1.

BACKGROUND

IEEE P2660.1: Recommended Practices on Industrial Agents

- Multi-agent systems in Industrial control systems
- Identify best-fit practices for a given context

Graph databases:

- Highly interconnected data
- Easier to visualise than relational databases
- Just as easy to query

RELATED LITERATURE

- Available tools (storage and recommendation):
 - [1] and [2] use relational and XML databases respectively.
 - [3] uses a graph database for data visualization.
 - [4] and [5] use graph databases in domains such as Chemistry and Biology.
- Novelty:
 - **IASelect** provides query <u>boiler-plates</u>[6].
 - Practitioners <u>do not</u> require expertise in <u>querying graph databases</u> (unlike [1-3]).
 - IASelect enforces <u>schema-based topological restrictions</u> which reduce the risk of <u>data</u> <u>corruption</u> (unlike [2]).

3. R. Loof and K. Pussinen, "Visualisation of requirements and their relations in embedded systems," 2014.

4. R. J. Hall, C. W. Murray, and M. L. Verdonk, "The fragment network: A chemistry recommendation engine built using a graph database," Journal of medicinal chemistry, vol. 60, no. 14, pp. 6440–6450, 2017. 5. M. Graves, E. R. Bergeman, and C. B. Lawrence, "Querying a genome database using graphs," in Proceedings of the 3th International Conference on Bioinformatics and Genome Research, 1994.

6. R. Sinha, S. Patil, C. Pang, V. Vyatkin, and B. Dowdeswell, "Requirements engineering of industrial automation systems: Adapting the CESAR requirements meta model for safety-critical smart grid software," in Industrial Electronics Society, IECON 2015-41st Annual Conference of the IEEE. IEEE, 2015, 2015, 2012

^{1.} S. Morimoto, D. Horie, and J. Cheng, "A security requirement management database based on iso/iec 15408," in International Conference on Computational Science and Its Applications. Springer, 2006, pp. 1–10. 2. S. Morimoto and J. Cheng, "A security specification library with a schemaless database," in International Conference on Computational Science. Springer, 2007, pp. 890–893.

APPROACH FOR DESIGING IA Select

P2660.1 RANKING DATASET

REQUIREMENTS FOR IASelect GRAPH DATABASE DESIGN FOR P2660.1 DATASET

ARCHITECTURE OF IASelect

IASelect CLIENT INTERFACE

P2660.1 IA RANKING DATASET

				Domain			Function	า			
		Need host agents	Energy	Factory automation	Building automation	Monitor	Control	Simulation	Scalability	Time behaviour	Reusability
Hybrid	l, Tightly										
#UT 1	API client: Java	0	2	5	2	4	1	2	2	2	2
#11,1	Channel: Modbus	U	5	5	5	4	1	2	2	5	5
On-de	vice, Tightly										
#OT 1	API client: Java	1	2	4	2	4	4	1	2	5	2
#01,1	Channel: Modbus	1	5	4	5	4	4	1	2	5	2
Hybrid	l, Loosed										
#11 1	API client: Apache Milo	0	4	5	4	5	1	5	4	2	5
πnic, 1	Channel: OPC-UA	v	4	5	4	5	1	5	4	5	5
	API client: Apache Paho										
#HL, 2	Channel: MQTT	0	3	4	5	5	1	5	4	2	5
	Broker: Eclipse Mosquit										
On-De	vice, Loosed										
#01 1	API client: Apache Milo	1	2	4	4	5	2	2	2	4	5
#OL, 1	Channel: OPC-UA	1	5	4	4	5	5	5	5	4	5
	API client: Apache Paho										
#OL, 2	Channel: MQTT	1	2	4	4	5	3	3	3	4	5
	Broker: Eclipse Mosquit										

IA CHARACTERISTICS IDENTIFIED IN P2660.1

Domain	Function	Maintenance	Performance Efficiency
Factory Automation	Monitoring	Re-usability	Time behaviour
Building Automation	Control	Capacity To Host	Soolobility
Energy	Simulation	agents	Scalability

REQUIREMENTS FOR IA Select

Scenario define	Results:						
Context		Recomended interface practice					
Function?	Control		#OL, 1				
Application domain?	Factory automation	Suggested	d technologies				
Technology capable to host agent							
Veights for criteria		Details					
Scalability	10%			Score	Score final		
Time behaviour	10%	Hybrid, Ti	ghtly				
Reusability	80%	#HT,1	API client: Java	2.9	0.6		
	100%		Channel: Modbus				
		On-device, Tightly					
		#OT,1	API client: Java	2.3	1.8		
			Channel: Modbus				
		Hybrid, Lo	oosed				
		#HL, 1	API client: Apache Milo	4.7	0.9		
			Channel: OPC-UA				
		#HL, 2	API client: Apache Paho	4.6	0.9		
			Channel: MQTT				
			Broker: Eclipse Mosquito				
		On-Device, Loosed					
		#OL, 1	API client: Apache Milo	4.7	2.8		
			Channel: OPC-UA				
		#OL, 2	API client: Apache Paho	4.7	2.8		
			Channel: MQTT				
	should be about	rma@aut as as	Broker: Eclipse Mosquito				

GRAPH DB DESIGN FOR P2660.1 DATASET

GRAPH SCHEMA

GRAPH DATABASE

chandan.sharma@aut.ac.nz

ARCHITECTURE OF IA Select

IA Select CLIENT INTERFACE

TECHNOLOGY STACK OF IA Select

CLIENT

DEMO OF IA Select

		HL:1		
ain Factory Automation 🗸				
Agents Yes V	NAME	API CLIENT	CHANNEL	FINAL-SCORE
	HL:1	Apache Milo	OPC-UA	4.6
hts for criteria	HL:2	Apache Paho	MQTT	4.5
ity 20% ~	OL:1	Apache Milo	OPC-UA	4.5
ebaviour 10%	OL:2	Apache Paho	MQTT	4.5
	HT:1	Java	Modbus	2.24
Dility 70% ~	OT:1	Java	Modbus	1.84

ARCHITECTURAL ADVANTAGES OF IA Select

Functional Suitability: Ability for Users to query the graph database to rank available practice.

Usability: Allow **Users** to enter information in an **interactive manner**, provide appropriate **user error protection** and **present results** clearly.

Availability: Accessible to multiple *Users*, present in different locations at same time.

Portability: Independent of **Users'** computer configuration.

LIMITATIONS AND FUTURE WORK

- **Performance:** As database grows in size, loading the entire graph into RAM will result in slow query processing.
 - Databases are I/O bound so what would be the performance of GraphDBs?
 - This is an open question related to graph database research.
- Future Work: Add a Admin console for practitioners to perform CRUD operations.

Thank You!