Gain-Some-Lose-Some: Reliable Quantification Under General Dataset Shift

Benjamin Denham, Edmund M-K Lai, Roopak Sinha, and M. Asif Naeem

Funded by a Callaghan Innovation R&D Fellowship Grant FPAP1902 for Fisher & Paykel Appliances and a Doctoral Fees Scholarship from Auckland University of Technology

Presented by: Benjamin Denham (ben.denham@aut.ac.nz)

Learning Task: Quantification

Supervision: Training set of labelled instances with features (X) and class labels (Y)

Prediction target: Proportions of classes in unlabelled test sets

Train/Source Dist. $P^{S}(X, Y)$

Test/Target Dist. $P^T(X, Y)$

Train/Source Dist. $P^{S}(X, Y)$ Test/Target Dist. $P^T(X, Y)$

Shift Type	Assumptions	Methods				
No shift	$P^S(X,Y) = P^T(X,Y)$	CC, PCC ¹				

1. K. Keith and B. O'Connor, "Uncertainty-aware generative models for inferring document class prevalence," in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, pp. 4575–4585.

Train/Source Dist. $P^{S}(X, Y)$

IEEE ICDM 2021

Test/Target Dist. $P^T(X, Y)$

Shift Type	Assumptions	Methods	
No shift	$P^S(X,Y) = P^T(X,Y)$	CC, PCC ¹	
Prior shift	$P^S(Y) eq P^T(Y) onumber \ P^S(X Y) = P^T(X Y)$	EM ²	

1. K. Keith and B. O'Connor, "Uncertainty-aware generative models for inferring document class prevalence," in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, pp. 4575–4585.

2. M. Saerens, P. Latinne, and C. Decaestecker, "Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure," *Neural computation*, vol. 14, no. 14, no.

Train/Source Dist. $P^{S}(X, Y)$

IEEE ICDM 2021

Test/Target Dist. $P^T(X, Y)$

Shift Type	Assumptions	Methods
No shift	$P^S(X,Y) = P^T(X,Y)$	CC, PCC ¹
Prior shift	$P^S(Y) eq P^T(Y) onumber \ P^S(X Y) = P^T(X Y)$	EM ²
General shift	$P^S(X,Y) eq P^T(X,Y)$	Proposed GSLS

1. K. Keith and B. O'Connor, "Uncertainty-aware generative models for inferring document class prevalence," in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, pp. 4575–4585.

2. M. Saerens, P. Latinne, and C. Decaestecker, "Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure," Neural computation, vol. 14,

The Impact of Dataset Shift

IEEE ICDM 2021

The Impact of Dataset Shift

AUT IEEE ICDM 2021

IEEE ICDM 2021

IEEE ICDM 2021

Dataset	$\{w^+,w^-\}$	$\{0,0\}$	$\{0,.3\}$	$\{0,.7\}$	$\{0,1\}$	$\{.3, 0\}$	$\{.3, .3\}$	$\{.3,.7\}$	$\{.3,1\}$	$\{.7, 0\}$	$\{.7, .3\}$	$\{.7, .7\}$	$\{.7, 1\}$	$\{1,0\}$	$\{1, .3\}$	$\{1,.7\}$	$\{1,1\}$	PS
HLL	PCC	82%	84%	82%	40%	62%	71%	70%	39%	47%	58%	58%	40%	40%	52%	52%	40%	71%
	EM	100%	100%	97%	67%	89%	<mark>93</mark> %	91%	64%	74%	84%	82%	63%	64%	77%	76%	66%	98%
_	GSLS	<mark>99</mark> %	99%	99%	86%	94%	96%	97%	<mark>92</mark> %	92%	<mark>93</mark> %	94%	<mark>92</mark> %	85%	89%	88%	86%	95%
HLA	PCC	81%	74%	63%	26%	60%	63%	57%	26%	40%	43%	42%	26%	26%	31%	30%	25%	62%
	EM	95%	93%	80%	67%	80%	83%	76%	64%	56%	64%	65%	63%	67%	69%	70%	67%	89%
	GSLS	89%	83%	76%	50%	78%	76%	73%	52%	66%	64%	63%	52%	49%	53%	52%	49%	77%
DIG	PCC	96%	92%	72%	21%	45%	53%	48%	19%	28%	33%	32%	18%	21%	26%	25%	20%	49%
	EM	100%	<mark>96</mark> %	76%	43%	78%	85%	66%	36%	52%	63%	55%	35%	41%	49%	49%	40%	95%
	GSLS	<mark>99</mark> %	97%	95%	75%	94%	96%	97%	87%	89%	90%	<mark>92</mark> %	89%	77%	77%	78%	76%	87%
ISX	PCC	80%	41%	25%	12%	24%	27%	19%	10%	14%	17%	16%	10%	10%	14%	11%	10%	20%
	EM	99%	79%	63%	42%	61%	63%	52%	33%	51%	53%	50%	32%	41%	44%	48%	44%	97%
	GSLS	97%	<mark>92</mark> %	82%	74%	91%	94%	91%	85%	87%	87%	88%	87%	76%	75%	75%	76%	84%
ISP	PCC	74%	19%	8%	4%	16%	16%	9%	4%	8%	9%	8%	4%	5%	6%	6%	5%	7%
	EM	90%	20%	11%	8%	14%	18%	10%	6%	6%	9%	9%	5%	8%	8%	8%	9%	74%
	GSLS	<mark>96</mark> %	64%	51%	52%	64%	61%	55%	54%	57%	52%	57%	58%	51%	47%	48%	52%	40%

Coverage of true class proportions by 80% prediction intervals

							•	•			•							
Dataset	$\{w^+,w^-\}$	$\{0,0\}$	$\{0,.3\}$	$\{0,.7\}$	$\{0,1\}$	$\{.3, 0\}$	$\{.3, .3\}$	$\{.3,.7\}$	$\{.3, 1\}$	$\{.7, 0\}$	$\{.7, .3\}$	$\{.7,.7\}$	$\{.7, 1\}$	$\{1, 0\}$	$\{1, .3\}$	$\{1, .7\}$	$\{1,1\}$	PS
HLL	PCC	82%	84%	82%	40%	62%	71%	70%	39%	47%	58%	58%	40%	40%	52%	52%	40%	71%
	EM	100%	100%	97%	67%	89%	<mark>93</mark> %	91%	64%	74%	84%	82%	63%	64%	77%	76%	66%	98%
	GSLS	99%	99%	99%	<mark>86</mark> %	94%	96%	97%	92%	92%	<mark>93</mark> %	94%	92%	85%	89%	88%	86%	95%
HLA	PCC	81%	74%	63%	26%	60%	63%	57%	26%	40%	43%	42%	26%	26%	31%	30%	25%	62%
	EM	95%	93%	80%	67%	80%	83%	76%	64%	56%	64%	65%	63%	67%	69%	70%	67%	89%
	GSLS	89%	83%	76%	50%	78%	76%	73%	52%	66%	64%	63%	52%	49%	53%	52%	49%	77%
DIG	PCC	<mark>96</mark> %	92%	72%	21%	45%	53%	48%	19%	28%	33%	32%	18%	21%	26%	25%	20%	49%
	EM	100%	96%	76%	43%	78%	85%	66%	36%	52%	63%	55%	35%	41%	49%	49%	40%	95%
	GSLS	99%	97%	95%	75%	94%	96%	97%	87%	89%	90%	<mark>92</mark> %	89%	77%	77%	78%	76%	87%
ISX	PCC	80%	41%	25%	12%	24%	27%	19%	10%	14%	17%	16%	10%	10%	14%	11%	10%	20%
	EM	99%	79%	63%	42%	61%	63%	52%	33%	51%	53%	50%	32%	41%	44%	48%	44%	97%
	GSLS	97%	<mark>92</mark> %	82%	74%	91%	94%	91%	85%	87%	87%	88%	87%	76%	75%	75%	76%	84%
ISP	PCC	74%	19%	8%	4%	16%	16%	9%	4%	8%	9%	8%	4%	5%	6%	6%	5%	7%
	EM	90%	20%	11%	8%	14%	18%	10%	6%	6%	9%	9%	5%	8%	8%	8%	9%	74%
	GSLS	96%	64%	51%	52%	64%	61%	55%	54%	57%	52%	57%	58%	51%	47%	48%	52%	40%

Coverage of true class proportions by 80% prediction intervals

Dataset	$\{w^+,w^-\}$	$\{0,0\}$	$\{0,.3\}$	$\{0,.7\}$	$\{0,1\}$	$\{.3, 0\}$	$\{.3,.3\}$	$\{.3,.7\}$	$\{.3, 1\}$	$\{.7, 0\}$	$\{.7, .3\}$	$\{.7,.7\}$	$\{.7, 1\}$	$\{1, 0\}$	$\{1, .3\}$	$\{1,.7\}$	$\{1, 1\}$	PS
HLL	PCC	82%	84%	82%	40%	62%	71%	70%	39%	47%	58%	58%	40%	40%	52%	52%	40%	71%
	EM	100%	100%	97%	67%	89%	<mark>93</mark> %	91%	64%	74%	84%	82%	63%	64%	77%	76%	66%	98%
	GSLS	99%	99%	99%	<mark>86</mark> %	94%	96%	97%	92%	92%	<mark>93</mark> %	94%	92%	85%	89%	88%	86%	95%
HLA	PCC	81%	74%	63%	26%	60%	63%	57%	26%	40%	43%	42%	26%	26%	31%	30%	25%	62%
	EM	95%	93%	80%	67%	80%	83%	76%	64%	56%	64%	65%	63%	67%	69%	70%	67%	89%
	GSLS	89%	83%	76%	50%	78%	76%	73%	52%	66%	64%	63%	52%	49%	53%	52%	49%	77%
DIG	PCC	96%	92%	72%	21%	45%	53%	48%	19%	28%	33%	32%	18%	21%	26%	25%	20%	49%
	EM	100%	<mark>96</mark> %	76%	43%	78%	85%	66%	36%	52%	63%	55%	35%	41%	49%	49%	40%	95%
	GSLS	99%	97%	95%	75%	94%	96%	97%	87%	89%	90%	92%	89%	77%	77%	78%	76%	87%
ISX	PCC	80%	41%	25%	12%	24%	27%	19%	10%	14%	17%	16%	10%	10%	14%	11%	10%	20%
	EM	99%	79%	63%	42%	61%	63%	52%	33%	51%	53%	50%	32%	41%	44%	48%	44%	97%
	GSLS	97%	92%	82%	74%	91%	94%	91%	85%	87%	87%	88%	87%	76%	75%	75%	76%	84%
ISP	PCC	74%	19%	8%	4%	16%	16%	9%	4%	8%	9%	8%	4%	5%	6%	6%	5%	7%
	EM	90%	20%	11%	8%	14%	18%	10%	6%	6%	9%	9%	5%	8%	8%	8%	9%	74%
	GSLS	96%	64%	51%	52%	64%	61%	55%	54%	57%	52%	57%	58%	51%	47%	48%	52%	40%

Coverage of true class proportions by 80% prediction intervals

Dataset	$\{w^+,w^-\}$	$\{0,0\}$	$\{0,.3\}$	$\{0, .7\}$	$\{0,1\}$	$\{.3, 0\}$	$\{.3, .3\}$	$\{.3,.7\}$	$\{.3, 1\}$	$\{.7, 0\}$	$\{.7, .3\}$	$\{.7, .7\}$	$\{.7, 1\}$	$\{1,0\}$	$\{1, .3\}$	$\{1,.7\}$	$\{1,1\}$	PS
HLL	PCC	82%	84%	82%	40%	62%	71%	70%	39%	47%	58%	58%	40%	40%	52%	52%	40%	71%
	EM	100%	100%	97%	67%	89%	<mark>93</mark> %	91%	64%	74%	84%	82%	63%	64%	77%	76%	66%	98%
	GSLS	99 %	99%	99%	86%	94%	<mark>96</mark> %	97%	<mark>92</mark> %	92%	<mark>93</mark> %	94%	92%	85%	89%	88%	86%	95%
HLA	PCC	81%	74%	63%	26%	60%	63%	57%	26%	40%	43%	42%	26%	26%	31%	30%	25%	62%
	EM	9 5%	93%	80%	67%	80%	83%	76%	64%	56%	64%	65%	63%	67%	69%	70%	67%	89%
_	GSLS	89%	83%	76%	50%	78%	76%	73%	52%	66%	64%	63%	52%	49%	53%	52%	49%	77%
DIG	PCC	96%	92%	72%	21%	45%	53%	48%	19%	28%	33%	32%	18%	21%	26%	25%	20%	49%
	EM	100%	96%	76%	43%	78%	85%	66%	36%	52%	63%	55%	35%	41%	49%	49%	40%	95%
	GSLS	<mark>99</mark> %	<mark>97</mark> %	<mark>95</mark> %	75%	94%	<mark>96</mark> %	97%	87%	89%	90%	<mark>92</mark> %	<mark>89%</mark>	77%	77%	78%	76%	87%
ISX	PCC	80%	41%	25%	12%	24%	27%	19%	10%	14%	17%	16%	10%	10%	14%	11%	10%	20%
	EM	99%	79%	63%	42%	61%	63%	52%	33%	51%	53%	50%	32%	41%	44%	48%	44%	97%
	GSLS	<mark>97</mark> %	<mark>92</mark> %	82%	74%	91%	94%	91%	85%	87%	87%	88%	87%	76%	75%	75%	76%	84%
ISP	PCC	74%	19%	8%	4%	16%	16%	9%	4%	8%	9%	8%	4%	5%	6%	6%	5%	7%
	EM	90%	20%	11%	8%	14%	18%	10%	6%	6%	9%	9%	5%	8%	8%	8%	9%	74%
	GSLS	<mark>96</mark> %	64%	51%	52%	64%	61%	55%	54%	57%	52%	57%	58%	51%	47%	48%	52%	40%

Coverage of true class proportions by 80% prediction intervals

Conclusions and Future Work

- GSLS gives more **reliable prediction intervals** under more **general conditions of shift**.
- GSLS communicates the **degree of shift**, enabling users to take **proportionate corrective action**.
- In future work, we plan to:
 - Analyse specific shift conditions where GSLS fitting is suboptimal
 - Develop a framework for selecting the optimal quantification method for observed shift

Thanks for Watching

Source code: github.com/ben-denham/gsls

